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Abstract

Determining the attribution of the input elements to the

output values is very important for interpretability when we

use deep neural network (DNN) models in real-world tasks.

Gradient-based methods are widely used because they can

represent the relationship between each input and output

pair in the shape of a partial derivative. Attribution values

determined from DNN models that use batch normalization

include high levels of noise. This is problematic because

it significantly reduces the interpretability of the model. To

obtain sparse and interpretable attribution maps, we devel-

oped a new regularization method that includes a penalty

term, based on the L1-norm of gradient values calculated

through back-propagation procedures, in the loss function.

We evaluated the effectiveness of the method using CIFAR-

10 image datasets.

1. Introduction

In the machine learning field, explaining why neural net-

work models make decisions and predictions is very impor-

tant. Understanding why a model gives a specific answer is

crucial for reliability and safety, especially when deploying

neural network technology in different industries, medical

facilities, and factories.

There have been several studies that have demonstrated

the relationship between the input and output of trained

neural network models (Attributions, and we call its [value

— output?] an attribution map). Backpropagation-based

methods use partial differentials of the output with respect

to the model input in order to extract the attributions. They

visualize which pixels models focus on for the attribution

maps.

Backpropagation-based methods are separated into two

types: vanilla gradient-based, and extended gradient-based.

The former allows us to analyze the relationship between

the input and output based on the nature of gradients them-

selves [4], unlike the latter.

In this study, we focused on vanilla gradient based meth-

ods, and we showed batch normalization tends to add a high

level of noise to attribution maps. We developed a new reg-

ularization method named L1-Norm Gradient Penalty to re-

move the noise from attribution maps. This method regu-

larized attribution maps during the training phase to make

attribution maps sparser. To evaluate the effectiveness of

our method, we carried out image classification experiments

and showed that the noise in the attribution maps had de-

creased.

Our Contributions: (1) We showed that batch normaliza-

tion affects noise levels in attribution maps extracted by

vanilla gradient methods. (2) We used a L1-Norm Gradient

penalty to reduce the noise caused by batch normalization

without affecting the accuracy, and we evaluated the effec-

tiveness of our method with additional experiments.

2. Related Works

The attribution map between the input and output of neu-

ral networks has been studied with regards to visualization

and interpretability. A typical approach is to run a back-

propagation algorithm with models. These methods fall into

two categories defined by how the attributions are calcu-

lated.

Vanilla Gradient-Based Method: This method extracts

attribution maps from the original gradients of the output

with respect to input?. Simonyan et al. extracted the origi-

nal gradient values of the output with respect to the input to

produce attributions of neural networks [6]. Sundararajan

et al. [9] derived their integrated gradient method from the

saliency map method. They focused on satiating the out-

put of the model and showed that this lowered the accuracy

of the saliency map. Smoothgrad [8] removes noise from

attribution maps by calculating the average gradients of

some noise-added samples. Time-smoothgrad [4] extends

the Smoothgrad concept to time-series regression tasks and

reduces noise in attribution maps by comparing them with

vanilla gradients.

Extended Gradient-Based Method: In this method, the

attribution maps are calculated by using different equations

based on gradients. Binder et al. [2] defined a “relevance
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Figure 1. Comparison of Attribution Maps: Column (a): vanilla gradient, column (b): Integrated Gradient, column (c): Smoothgrad,

and column (d): our method with batch normalization. Each attribution map from the model with batch normalizations (the left side) was

incapable of representing the shapes of the numbers in the original images on the right. On the other hand, the attribution maps in the center

that didn’t use batch normalization are capable of showing rough outlines of the numbers. As a result, we deduced that batch normalization

causes higher noise levels in attribution maps that have been extracted by using gradients.

score” that reflects the importance of each node in a neural

network; the sum for each layer is equal to the output values.

The relevance score is calculated by using back-propagation

of the output values. DeepLIFT [5] is an extension of this

method that consider the effect of the plus or minus sign of

the relevance score for each node.

Building on these studies, our research focuses on the

vanilla gradient method and reveals that batch normaliza-

tion causes high noise levels in attribution maps. We de-

veloped a new regularization for the training loss function.

Whereas the related studies focus on how to calculate attri-

butions without changing trained models, our method pro-

duces models that are trained to generate sparse attribution

maps instead of calculating new attribution maps.

3. Proposed Method

3.1. Noise of Attribution Map by Batch Normaliza­
tion

To investigate how batch normalization affects attribu-

tion maps, we carried out a simple experiment with a

MNIST dataset. Figure 1 shows a comparison between the

simple gradients of the output and input with and without

batch normalization. The network consisted of two convo-

lutional layers and one full connected layer and batch nor-

malization layers were inserted in the convolution layers.

We compared the saliency map [6], integrated gradient [9],

and smoothgrad [8]. Each method resulted in attribution

maps with high noise levels in the case of the models that

used batch normalization layers.

We examined the relationship between model input and

output, including those with batch normalization layers as

per the following procedure. Here, we define Model’ as

a trained model in which the last softmax layer has been

removed.

(1) Extract zero pixel indices in all test data samples.

Figure 2. Distribution of Difference between Input and Output

(2) Select one index from the indices (1) and create a sam-

ple converted value of the index into one.

(3) Feed sample (2) to Model’ and obtain output values.

(4) Repeat (2) and (3) for each index (1) and calculate the

difference between the output values of the original

test samples and the output value list provided by the

steps above.

Figure 2 shows the distribution of the difference. The

distribution based on the model with batch normalization

varies more than the distribution without batch normaliza-

tion. This result infers the output images are more affected

by unnecessary input pixels in models with batch normal-

izations, and this phenomenon can cause noise in attribution

maps.

3.2. L1 Norm Gradient Penalty

To reduce noise in attribution maps for image classifica-

tion tasks, we introduce a new regularized L1-norm gradi-

ent penalty to the loss functions L′ of neural networks as

follows:

L′ = L(x,y) + α

∣
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∣

∣
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∂x

∣

∣

∣

∣

(1)

Here, L((x,y) is the original loss function and Sc(x) is

the output of the layer immediately before the final softmax

layer of the true class c. α is the hyper-parameter to de-

cide the size of the regularization. The second term on the

right side means L1 is the norm of the simple gradients of
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Method VGG16 VGG19

Baseline 0.713 0.730

L1 Gradient Penalty 0.730 0.743

Table 1. Accuracy for CIFAR-10 dataset.

output with respect to the neural network input proposed by

Simonyan et al.

We hoped to get regular and sparse attribution maps di-

rectly in the training phase. Generally, not all input features

contribute to classifications or predictions. For example, in

image classification tasks such as CIFAR-10 and Imagenet,

subjects which models should recognize might be seen in

only part of the image. In many cases, models do not need

many background pixels, so the background of the attribu-

tion maps should be sparse.

The idea of regularizing gradients of output with respect

to input is similar to the regularization of WGAN-GP [3].

WGAN-GP uses the L2 norm for weight clipping to main-

tain the gradient norm, while our method uses the L1 norm

to calculate the gradients of sparse attribution maps.

4. Experiments

4.1. Qualitative Evaluation

To determine whether noise could be eliminated by us-

ing our method, we visualized attribution maps from models

trained with the L1-norm gradient penalty and the baseline

(without a penalty). We trained the VGG16 and VGG19 ar-

chitectures [7] on the CIFAR-10 dataset and each architec-

ture included batch normalization as the next layer of each

convolution layer. Note that the models are not pre-trained

by any datasets.

Figure 3 shows examples of attribution maps from

VGG16 model trained with our method and the baseline.

We extracted attribution maps by using (a) the vanilla gra-

dient by Simonyan et al. [6], (b) the integrated gradient [9],

(c) Smoothgrad [8], and (d) our method. Table 1 shows the

accuracy of each method.

4.2. Modified Sensitivity­n Evaluation

There is no common metric to evaluate attribution scores

and few studies have been made on this problem so far. An-

cona et al. proposed a metric Sensitivity-n based on rela-

tionship between attribution scores of feature subsets and

output variations[1]. We use this metric, with minor modi-

fication, for quantitative evaluation.

The Sensitivity-n metric is based on the idea that if con-

tribution of a feature subset is large, the sum of their attri-

bution scores Rn(x) tends to be proportional to the output

score variation Sn(x). It utilize the Pearson correlation co-

efficient between Rn(x) and Sn(x) as the metric.

For an input x, Rn(x) and Sn(x) are calculated as fol-

lows:

Rn(x) =

n
∑

i=1

Rc

i (x) (2)

Sn(x) = Sc(x)− Sc(x[xS=0]) (3)

xS = [x1, x2, . . . xn] ⊆ x (4)

Here, Rc
i
(x) and Sc(x) are attribution score of feature xi

regarding output class c and output value regarding class c,

respectively. In the experimental setting Ancona et al. [1],

Sensitivity-n is prepared as following steps: (1) Randomly

sample 100 subsets xS of features from input x of size n and

calculate Rn(x), Sn(x) for each xS . (2) Calculate Pearson

correlation coefficient by the sequences Rn(x) and Sn(x).
(3) Carry out step (1) and (2) for 1000 test samples (4) Com-

pare sample the averaged correlation while changing n from

1 to 1000.

Note that in our experiment, we modified correlation

function and use absolute Pearson correlation coefficient

instead of normal Pearson correlation coefficient because

training data is standardized as preprocessing. When train-

ing data includes plus and minus values, the correlation can

be minus even if attribution values contribute the output

variations.

Figure 4 shows the variation of the averaged absolute

correlation for each n of each training method. Compared

with the baseline method, our method resulted in a higher

correlations for each training procedure on both VGG16

and VGG19.

5. Discussion

Interplitability and Accuracy

As shown in Figure 3, the models trained with the L1-norm

Gradient Penalty sparse background pixels showed higher

attribution values for important pixels on the subjects com-

pared with the other attribution methods. Table 1 shows

that our method did not decrease accuracy. We can con-

clude our regularization creates more interpretable models

without sacrificing accuracy.

Effectiveness of Attribution

As shown in Figure 4, the model trained with L1-norm Gra-

dient Penalty keeps higher correlation of the attribution and

the output variation than model without any regularizations.

This result means the attribution map of the model with the

proposed method can represent the contribution the output

directly.

6. Conclusion

In this study, we addressed the high noise levels in at-

tribution maps caused by batch normalization (especially in

vanilla gradient methods). We used the MNIST dataset to
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Figure 3. Comparison of Attribution Maps: (a) vanilla gradient, (b) Integrated Gradient, (c) Smoothgrad, and (d) our method. The attribu-

tion maps are the average absolute values of the input channel direction (Red: +). By focusing on unimportant background pixels around

the subjects, our method makes them sparser than the other methods can.

Figure 4. Modified Sensitivity-n Evaluation: the vertical and hor-

izontal axes respectively show the averaged absolute correlation

and n.

conduct our experiments. To reduce and sparsify noise, we

used a L1-norm gradient penalty, which regularized the at-

tribution maps directly during the training phase. In our

study, attribution maps calculated using our method had

lower levels of background noise compared with those cal-

culated using other methods.

In future, we hope to find out why models that use batch

normalizations cause high noise levels in attribution maps

and why the L1-norm gradient penalty can reduce the noise.

In this study, we only carried out experiments on simple

convolutional neural network models; we need to confirm

the effectiveness of the method for other models, such as

multilayer perceptron and recurrent neural networks.
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